类 IO::Buffer

IO::Buffer 是用于输入/输出的高效零拷贝缓冲区。典型用例有

与字符串和文件内存的交互通过高效的底层 C 机制(如“memcpy`”)执行。

该类旨在成为一种实用工具,用于实现更高级别的机制,如 Fiber::Scheduler#io_readFiber::Scheduler#io_write 以及解析二进制协议。

用法示例

空缓冲区

buffer = IO::Buffer.new(8)  # create empty 8-byte buffer
# =>
# #<IO::Buffer 0x0000555f5d1a5c50+8 INTERNAL>
# ...
buffer
# =>
# <IO::Buffer 0x0000555f5d156ab0+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00
buffer.set_string('test', 2) # put there bytes of the "test" string, starting from offset 2
# => 4
buffer.get_string  # get the result
# => "\x00\x00test\x00\x00"

字符串缓冲区

string = 'buffer'
buffer = IO::Buffer.for(string)
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# ...
buffer
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# 0x00000000  64 61 74 61                                     buffer

buffer.get_string(2)  # read content starting from offset 2
# => "ta"
buffer.set_string('---', 1) # write content, starting from offset 1
# => 3
buffer
# =>
# #<IO::Buffer 0x00007f3f02be9b18+4 SLICE>
# 0x00000000  64 2d 2d 2d                                     d---
string  # original string changed, too
# => "d---"

文件缓冲区

File.write('test.txt', 'test buffer')
# => 9
buffer = IO::Buffer.map(File.open('test.txt'))
# =>
# #<IO::Buffer 0x00007f3f0768c000+9 MAPPED IMMUTABLE>
# ...
buffer.get_string(5, 2) # read 2 bytes, starting from offset 5
# => "da"
buffer.set_string('---', 1) # attempt to write
# in `set_string': Buffer is not writable! (IO::Buffer::AccessError)

# To create writable file-mapped buffer
# Open file for read-write, pass size, offset, and flags=0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 9, 0, 0)
buffer.set_string('---', 1)
# => 3 -- bytes written
File.read('test.txt')
# => "t--- buffer"

该类为实验性类,其接口可能会发生变化,这尤其适用于文件映射,它在将来可能会被完全移除。

常量

BIG_ENDIAN

指大端字节序,其中最高有效字节首先存储。有关更多详细信息,请参见 get_value

DEFAULT_SIZE

默认缓冲区大小,通常是 PAGE_SIZE 的(小)倍数。可以通过设置 RUBY_IO_BUFFER_DEFAULT_SIZE 环境变量来明确指定。

EXTERNAL

表示缓冲区中的内存由其他人所有。有关更多详细信息,请参见 external?

HOST_ENDIAN

指主机机器的字节序。有关更多详细信息,请参见 get_value

INTERNAL

表示缓冲区中的内存由缓冲区所有。有关更多详细信息,请参见 internal?

LITTLE_ENDIAN

指小端字节序,其中最低有效字节首先存储。有关更多详细信息,请参见 get_value

LOCKED

表示缓冲区中的内存已锁定,并且无法调整大小或释放。有关更多详细信息,请参见 locked?locked

MAPPED

表示缓冲区中的内存已由操作系统映射。有关更多详细信息,请参见 mapped?

NETWORK_ENDIAN

指网络字节序,它与大端字节序相同。有关更多详细信息,请参见 get_value

PAGE_SIZE

操作系统页面大小。用于高效的页面对齐内存分配。

PRIVATE

表示缓冲区中的内存已私有映射,并且更改不会复制到基础文件。有关更多详细信息,请参见 private?

READONLY

表示缓冲区中的内存为只读,并且尝试修改它将失败。有关更多详细信息,请参见 readonly?

SHARED

表示缓冲区中的内存也已映射,以便可以与其他进程共享。有关更多详细信息,请参见 shared?

公共类方法

IO::Buffer.for(string) → readonly io_buffer 点击切换源代码
IO::Buffer.for(string) {|io_buffer| ... 读/写 io_buffer ...}

从给定字符串的内存中创建一个零拷贝IO::Buffer。如果没有块,则会高效地创建一个字符串的冻结内部副本并将其用作缓冲区源。当提供一个块时,缓冲区将直接与字符串的内部缓冲区关联,并且更新缓冲区将更新字符串。

直到free在缓冲区上被调用(显式地或通过垃圾收集器),源字符串将被锁定且无法修改。

如果字符串被冻结,它将创建一个只读缓冲区,该缓冲区无法被修改。如果字符串被共享,它可能会在使用块形式时触发写时复制。

string = 'test'
buffer = IO::Buffer.for(string)
buffer.external? #=> true

buffer.get_string(0, 1)
# => "t"
string
# => "best"

buffer.resize(100)
# in `resize': Cannot resize external buffer! (IO::Buffer::AccessError)

IO::Buffer.for(string) do |buffer|
  buffer.set_string("T")
  string
  # => "Test"
end
VALUE
rb_io_buffer_type_for(VALUE klass, VALUE string)
{
    StringValue(string);

    // If the string is frozen, both code paths are okay.
    // If the string is not frozen, if a block is not given, it must be frozen.
    if (rb_block_given_p()) {
        struct io_buffer_for_yield_instance_arguments arguments = {
            .klass = klass,
            .string = string,
            .instance = Qnil,
            .flags = 0,
        };

        return rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);
    }
    else {
        // This internally returns the source string if it's already frozen.
        string = rb_str_tmp_frozen_acquire(string);
        return io_buffer_for_make_instance(klass, string, RB_IO_BUFFER_READONLY);
    }
}
IO::Buffer.map(file, [size, [offset, [flags]]]) → io_buffer 单击以切换源

通过内存映射文件为从file中读取创建一个IO::Bufferfile_io应该是一个File实例,打开以供读取。

可以指定可选的映射sizeoffset

默认情况下,缓冲区将是不可变的(只读);要创建一个可写映射,您需要以读写模式打开一个文件,并显式传递不带IO::Buffer::IMMUTABLE的flags参数。

File.write('test.txt', 'test')

buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
# => #<IO::Buffer 0x00000001014a0000+4 MAPPED READONLY>

buffer.readonly?   # => true

buffer.get_string
# => "test"

buffer.set_string('b', 0)
# `set_string': Buffer is not writable! (IO::Buffer::AccessError)

# create read/write mapping: length 4 bytes, offset 0, flags 0
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), 4, 0)
buffer.set_string('b', 0)
# => 1

# Check it
File.read('test.txt')
# => "best"

请注意,某些操作系统可能在映射缓冲区和文件读取之间没有缓存一致性。

static VALUE
io_buffer_map(int argc, VALUE *argv, VALUE klass)
{
    rb_check_arity(argc, 1, 4);

    // We might like to handle a string path?
    VALUE io = argv[0];

    size_t size;
    if (argc >= 2 && !RB_NIL_P(argv[1])) {
        size = io_buffer_extract_size(argv[1]);
    }
    else {
        rb_off_t file_size = rb_file_size(io);

        // Compiler can confirm that we handled file_size < 0 case:
        if (file_size < 0) {
            rb_raise(rb_eArgError, "Invalid negative file size!");
        }
        // Here, we assume that file_size is positive:
        else if ((uintmax_t)file_size > SIZE_MAX) {
            rb_raise(rb_eArgError, "File larger than address space!");
        }
        else {
            // This conversion should be safe:
            size = (size_t)file_size;
        }
    }

    // This is the file offset, not the buffer offset:
    rb_off_t offset = 0;
    if (argc >= 3) {
        offset = NUM2OFFT(argv[2]);
    }

    enum rb_io_buffer_flags flags = 0;
    if (argc >= 4) {
        flags = io_buffer_extract_flags(argv[3]);
    }

    return rb_io_buffer_map(io, size, offset, flags);
}
IO::Buffer.new([size = DEFAULT_SIZE, [flags = 0]]) → io_buffer 单击以切换源

创建一个新的零填充IO::Buffer,大小为size字节。默认情况下,缓冲区将是内部:直接分配的内存块。但是,如果请求的size大于特定于操作系统的IO::Buffer::PAGE_SIZE,则将使用虚拟内存机制(Unix 上的匿名mmap,Windows 上的VirtualAlloc)分配缓冲区。可以通过将IO::Buffer::MAPPED作为第二个参数传递来强制执行此行为。

buffer = IO::Buffer.new(4)
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000  00 00 00 00                                     ....

buffer.get_string(0, 1) # => "\x00"

buffer.set_string("test")
buffer
# =>
# #<IO::Buffer 0x000055b34497ea10+4 INTERNAL>
# 0x00000000  74 65 73 74                                     test
VALUE
rb_io_buffer_initialize(int argc, VALUE *argv, VALUE self)
{
    io_buffer_experimental();

    rb_check_arity(argc, 0, 2);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    size_t size;
    if (argc > 0) {
        size = io_buffer_extract_size(argv[0]);
    }
    else {
        size = RUBY_IO_BUFFER_DEFAULT_SIZE;
    }

    enum rb_io_buffer_flags flags = 0;
    if (argc >= 2) {
        flags = io_buffer_extract_flags(argv[1]);
    }
    else {
        flags |= io_flags_for_size(size);
    }

    io_buffer_initialize(self, buffer, NULL, size, flags, Qnil);

    return self;
}
size_of(buffer_type) → 字节大小 单击以切换源
size_of(buffer_type 数组) → 字节大小

以字节为单位返回给定缓冲区类型的大小。

IO::Buffer.size_of(:u32) # => 4
IO::Buffer.size_of([:u32, :u32]) # => 8
static VALUE
io_buffer_size_of(VALUE klass, VALUE buffer_type)
{
    if (RB_TYPE_P(buffer_type, T_ARRAY)) {
        size_t total = 0;
        for (long i = 0; i < RARRAY_LEN(buffer_type); i++) {
            total += io_buffer_buffer_type_size(RB_SYM2ID(RARRAY_AREF(buffer_type, i)));
        }
        return SIZET2NUM(total);
    }
    else {
        return SIZET2NUM(io_buffer_buffer_type_size(RB_SYM2ID(buffer_type)));
    }
}
IO::Buffer.string(length) {|io_buffer| ... 读/写 io_buffer ...} → string 单击以切换源

创建一个给定长度的新字符串,并将一个零拷贝IO::Buffer实例传递给将字符串用作源的块。该块预计会写入缓冲区,并且将返回该字符串。

IO::Buffer.string(4) do |buffer|
  buffer.set_string("Ruby")
end
# => "Ruby"
VALUE
rb_io_buffer_type_string(VALUE klass, VALUE length)
{
    VALUE string = rb_str_new(NULL, RB_NUM2LONG(length));

    struct io_buffer_for_yield_instance_arguments arguments = {
        .klass = klass,
        .string = string,
        .instance = Qnil,
    };

    rb_ensure(io_buffer_for_yield_instance, (VALUE)&arguments, io_buffer_for_yield_instance_ensure, (VALUE)&arguments);

    return string;
}

公共实例方法

source & mask → io_buffer 单击以切换源

通过对源应用二进制 AND 运算来生成一个与源大小相同的新缓冲区,使用掩码,必要时重复。

IO::Buffer.for("1234567890") & IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x00005589b2758480+4 INTERNAL>
# 0x00000000  31 00 00 34 35 00 00 38 39 00                   1..45..89.
static VALUE
io_buffer_and(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_and(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
<=>(other) → true 或 false 单击以切换源

缓冲区通过使用 memcmp 比较大小和它们引用的内存的确切内容。

static VALUE
rb_io_buffer_compare(VALUE self, VALUE other)
{
    const void *ptr1, *ptr2;
    size_t size1, size2;

    rb_io_buffer_get_bytes_for_reading(self, &ptr1, &size1);
    rb_io_buffer_get_bytes_for_reading(other, &ptr2, &size2);

    if (size1 < size2) {
        return RB_INT2NUM(-1);
    }

    if (size1 > size2) {
        return RB_INT2NUM(1);
    }

    return RB_INT2NUM(memcmp(ptr1, ptr2, size1));
}
source ^ mask → io_buffer 单击以切换源

通过对源应用二进制 XOR 操作生成一个与源大小相同的新缓冲区,使用掩码,必要时重复。

IO::Buffer.for("1234567890") ^ IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x000055a2d5d10480+10 INTERNAL>
# 0x00000000  ce 32 33 cb ca 36 37 c7 c6 30                   .23..67..0
static VALUE
io_buffer_xor(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_xor(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
and!(mask) → io_buffer 单击以切换源

通过对源应用二进制 AND 操作修改源缓冲区,使用掩码,必要时重复。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.and!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a0d0c20+10 INTERNAL>
# 0x00000000  31 00 00 34 35 00 00 38 39 00                   1..45..89.
static VALUE
io_buffer_and_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_and_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
clear(value = 0, [offset, [length]]) → self 单击以切换源

使用 value 填充缓冲区,从 offset 开始,持续 length 字节。

buffer = IO::Buffer.for('test')
# =>
#   <IO::Buffer 0x00007fca40087c38+4 SLICE>
#   0x00000000  74 65 73 74         test

buffer.clear
# =>
#   <IO::Buffer 0x00007fca40087c38+4 SLICE>
#   0x00000000  00 00 00 00         ....

buf.clear(1) # fill with 1
# =>
#   <IO::Buffer 0x00007fca40087c38+4 SLICE>
#   0x00000000  01 01 01 01         ....

buffer.clear(2, 1, 2) # fill with 2, starting from offset 1, for 2 bytes
# =>
#   <IO::Buffer 0x00007fca40087c38+4 SLICE>
#   0x00000000  01 02 02 01         ....

buffer.clear(2, 1) # fill with 2, starting from offset 1
# =>
#   <IO::Buffer 0x00007fca40087c38+4 SLICE>
#   0x00000000  01 02 02 02         ....
static VALUE
io_buffer_clear(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    uint8_t value = 0;
    if (argc >= 1) {
        value = NUM2UINT(argv[0]);
    }

    size_t offset, length;
    io_buffer_extract_offset_length(self, argc-1, argv+1, &offset, &length);

    rb_io_buffer_clear(self, value, offset, length);

    return self;
}
copy(source, [offset, [length, [source_offset]]]) → size 单击以切换源

从源 IO::Buffer 高效地复制到缓冲区,在 offset 处使用 memcpy。要复制 String 实例,请参见 set_string

buffer = IO::Buffer.new(32)
# =>
# #<IO::Buffer 0x0000555f5ca22520+32 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
# 0x00000010  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................  *

buffer.copy(IO::Buffer.for("test"), 8)
# => 4 -- size of buffer copied
buffer
# =>
# #<IO::Buffer 0x0000555f5cf8fe40+32 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00 74 65 73 74 00 00 00 00 ........test....
# 0x00000010  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ *

copy 可用于将缓冲区放入与缓冲区关联的字符串中

string= "buffer:    "
# => "buffer:    "
buffer = IO::Buffer.for(string)
buffer.copy(IO::Buffer.for("test"), 5)
# => 4
string
# => "buffer:test"

尝试复制到只读缓冲区将失败

File.write('test.txt', 'test')
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::READONLY)
buffer.copy(IO::Buffer.for("test"), 8)
# in `copy': Buffer is not writable! (IO::Buffer::AccessError)

有关创建可变文件映射的详细信息,请参见 ::map,这将起作用

buffer = IO::Buffer.map(File.open('test.txt', 'r+'))
buffer.copy(IO::Buffer.for("boom"), 0)
# => 4
File.read('test.txt')
# => "boom"

尝试复制缓冲区,该缓冲区需要放置在缓冲区边界之外,将失败

buffer = IO::Buffer.new(2)
buffer.copy(IO::Buffer.for('test'), 0)
# in `copy': Specified offset+length is bigger than the buffer size! (ArgumentError)
static VALUE
io_buffer_copy(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 4);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE source = argv[0];
    const void *source_base;
    size_t source_size;

    rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);

    return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
each(buffer_type, [offset, [count]]) {|offset, value| ...} → self 单击以切换源
each(buffer_type, [offset, [count]]) → enumerator

遍历缓冲区,从 offset 开始生成每个 valuebuffer_type

如果给定 count,则只生成 count 个值。

IO::Buffer.for("Hello World").each(:U8, 2, 2) do |offset, value|
  puts "#{offset}: #{value}"
end
# 2: 108
# 3: 108
static VALUE
io_buffer_each(int argc, VALUE *argv, VALUE self)
{
    RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);

    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    ID buffer_type;
    if (argc >= 1) {
        buffer_type = RB_SYM2ID(argv[0]);
    }
    else {
        buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
    }

    size_t offset, count;
    io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);

    for (size_t i = 0; i < count; i++) {
        size_t current_offset = offset;
        VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
        rb_yield_values(2, SIZET2NUM(current_offset), value);
    }

    return self;
}
each_byte([offset, [count]]) {|offset, byte| ...} → self 单击以切换源
each_byte([offset, [count]]) → enumerator

遍历缓冲区,从 offset 开始生成每个字节。

如果给定 count,则只生成 count 个字节。

IO::Buffer.for("Hello World").each_byte(2, 2) do |offset, byte|
  puts "#{offset}: #{byte}"
end
# 2: 108
# 3: 108
static VALUE
io_buffer_each_byte(int argc, VALUE *argv, VALUE self)
{
    RETURN_ENUMERATOR_KW(self, argc, argv, RB_NO_KEYWORDS);

    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    size_t offset, count;
    io_buffer_extract_offset_count(RB_IO_BUFFER_DATA_TYPE_U8, size, argc-1, argv+1, &offset, &count);

    for (size_t i = 0; i < count; i++) {
        unsigned char *value = (unsigned char *)base + i + offset;
        rb_yield(RB_INT2FIX(*value));
    }

    return self;
}
empty? → true or false 单击以切换源

如果缓冲区大小为 0:它将通过 ::new 创建,大小为 0,或通过 ::for 从空字符串创建。(请注意,无法映射空文件,因此使用 ::map 创建的缓冲区永远不会为空。)

static VALUE
rb_io_buffer_empty_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->size == 0);
}
external? → true 或 false 点击切换源

如果缓冲区引用未由缓冲区本身分配或映射的内存,则缓冲区为外部

使用 ::for 创建的缓冲区对字符串的内存具有外部引用。

外部缓冲区无法调整大小。

static VALUE
rb_io_buffer_external_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_EXTERNAL);
}
free → self 点击切换源

如果缓冲区引用内存,则将其释放回操作系统。

  • 对于映射缓冲区(例如,来自文件):取消映射。

  • 对于从头开始创建的缓冲区:释放内存。

  • 对于从字符串创建的缓冲区:取消关联。

释放缓冲区后,无法对其执行进一步的操作。

你可以调整已释放缓冲区的大小以重新分配它。

buffer = IO::Buffer.for('test')
buffer.free
# => #<IO::Buffer 0x0000000000000000+0 NULL>

buffer.get_value(:U8, 0)
# in `get_value': The buffer is not allocated! (IO::Buffer::AllocationError)

buffer.get_string
# in `get_string': The buffer is not allocated! (IO::Buffer::AllocationError)

buffer.null?
# => true
VALUE
rb_io_buffer_free(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Buffer is locked!");
    }

    io_buffer_free(buffer);

    return self;
}
get_string([offset, [length, [encoding]]]) → string 点击切换源

以指定的 encoding 将缓冲区的一部分或全部读入字符串。如果没有提供编码,则使用 Encoding::BINARY

buffer = IO::Buffer.for('test')
buffer.get_string
# => "test"
buffer.get_string(2)
# => "st"
buffer.get_string(2, 1)
# => "s"
static VALUE
io_buffer_get_string(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    const void *base;
    size_t size;
    io_buffer_get_bytes_for_reading(buffer, &base, &size);

    rb_encoding *encoding;
    if (argc >= 3) {
        encoding = rb_find_encoding(argv[2]);
    }
    else {
        encoding = rb_ascii8bit_encoding();
    }

    io_buffer_validate_range(buffer, offset, length);

    return rb_enc_str_new((const char*)base + offset, length, encoding);
}
get_value(buffer_type, offset) → numeric 点击切换源

从缓冲区读取 offset 处的 type 值。buffer_type 应为以下符号之一

  • :U8:无符号整数,1 字节

  • :S8:有符号整数,1 字节

  • :u16:无符号整数,2 字节,小端

  • :U16:无符号整数,2 字节,大端

  • :s16:有符号整数,2 字节,小端

  • :S16:有符号整数,2 字节,大端

  • :u32:无符号整数,4 字节,小端

  • :U32:无符号整数,4 字节,大端

  • :s32:有符号整数,4 字节,小端

  • :S32:有符号整数,4 字节,大端

  • :u64:无符号整数,8 字节,小端

  • :U64:无符号整数,8 字节,大端

  • :s64:有符号整数,8 字节,小端

  • :S64:有符号整数,8 字节,大端

  • :f32:浮点数,4 字节,小端

  • :F32:浮点数,4 字节,大端

  • :f64:双精度浮点数,8 字节,小端

  • :F64:双精度浮点数,8 字节,大端

缓冲区类型具体指存储在缓冲区中的二进制缓冲区的类型。例如,:u32 缓冲区类型是小端格式的 32 位无符号整数。

string = [1.5].pack('f')
# => "\x00\x00\xC0?"
IO::Buffer.for(string).get_value(:f32, 0)
# => 1.5
static VALUE
io_buffer_get_value(VALUE self, VALUE type, VALUE _offset)
{
    const void *base;
    size_t size;
    size_t offset = io_buffer_extract_offset(_offset);

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    return rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
}
get_values(buffer_types, offset) → array 单击以切换源代码

类似于 get_value,但它可以处理多个缓冲区类型并返回一个值数组。

string = [1.5, 2.5].pack('ff')
IO::Buffer.for(string).get_values([:f32, :f32], 0)
# => [1.5, 2.5]
static VALUE
io_buffer_get_values(VALUE self, VALUE buffer_types, VALUE _offset)
{
    size_t offset = io_buffer_extract_offset(_offset);

    const void *base;
    size_t size;
    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
    }

    VALUE array = rb_ary_new_capa(RARRAY_LEN(buffer_types));

    for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
        VALUE type = rb_ary_entry(buffer_types, i);
        VALUE value = rb_io_buffer_get_value(base, size, RB_SYM2ID(type), &offset);
        rb_ary_push(array, value);
    }

    return array;
}
hexdump([offset, [length, [width]]]) → string 单击以切换源代码

返回缓冲区的可读字符串表示形式。确切格式可能会更改。

buffer = IO::Buffer.for("Hello World")
puts buffer.hexdump
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World

由于缓冲区通常相当大,因此您可能希望通过指定偏移量和长度来限制输出

puts buffer.hexdump(6, 5)
# 0x00000006  57 6f 72 6c 64                                  World
static VALUE
rb_io_buffer_hexdump(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 3);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    size_t width = RB_IO_BUFFER_HEXDUMP_DEFAULT_WIDTH;
    if (argc >= 3) {
        width = io_buffer_extract_width(argv[2], 1);
    }

    // This may raise an exception if the offset/length is invalid:
    io_buffer_validate_range(buffer, offset, length);

    VALUE result = Qnil;

    if (io_buffer_validate(buffer) && buffer->base) {
        result = rb_str_buf_new(io_buffer_hexdump_output_size(width, length, 1));

        io_buffer_hexdump(result, width, buffer->base, offset+length, offset, 1);
    }

    return result;
}
dup → io_buffer 单击以切换源代码
clone → io_buffer

创建源缓冲区的内部副本。对副本的更新不会影响源缓冲区。

source = IO::Buffer.for("Hello World")
# =>
# #<IO::Buffer 0x00007fd598466830+11 EXTERNAL READONLY SLICE>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
buffer = source.dup
# =>
# #<IO::Buffer 0x0000558cbec03320+11 INTERNAL>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
static VALUE
rb_io_buffer_initialize_copy(VALUE self, VALUE source)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    const void *source_base;
    size_t source_size;

    rb_io_buffer_get_bytes_for_reading(source, &source_base, &source_size);

    io_buffer_initialize(self, buffer, NULL, source_size, io_flags_for_size(source_size), Qnil);

    return io_buffer_copy_from(buffer, source_base, source_size, 0, NULL);
}
inspect → string 单击以切换源代码

检查缓冲区并报告有关其内部状态的有用信息。缓冲区中只有一小部分将以十六进制转储样式格式显示。

buffer = IO::Buffer.for("Hello World")
puts buffer.inspect
# #<IO::Buffer 0x000000010198ccd8+11 EXTERNAL READONLY SLICE>
# 0x00000000  48 65 6c 6c 6f 20 57 6f 72 6c 64                Hello World
VALUE
rb_io_buffer_inspect(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE result = rb_io_buffer_to_s(self);

    if (io_buffer_validate(buffer)) {
        // Limit the maximum size generated by inspect:
        size_t size = buffer->size;
        int clamped = 0;

        if (size > RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE) {
            size = RB_IO_BUFFER_INSPECT_HEXDUMP_MAXIMUM_SIZE;
            clamped = 1;
        }

        io_buffer_hexdump(result, RB_IO_BUFFER_INSPECT_HEXDUMP_WIDTH, buffer->base, size, 0, 0);

        if (clamped) {
            rb_str_catf(result, "\n(and %" PRIuSIZE " more bytes not printed)", buffer->size - size);
        }
    }

    return result;
}
internal? → true 或 false 单击以切换源代码

如果缓冲区是内部缓冲区,则表示它引用缓冲区本身分配的内存。

内部缓冲区与任何外部内存(例如字符串)或文件映射无关。

使用 ::new 创建内部缓冲区,并且当请求的大小小于 IO::Buffer::PAGE_SIZE 且在创建时未请求映射时,它是默认值。

内部缓冲区可以调整大小,此类操作通常会使所有切片无效,但并非总是如此。

static VALUE
rb_io_buffer_internal_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_INTERNAL);
}
locked { ... } 单击以切换源代码

允许以独占方式处理缓冲区,以确保并发安全性。在执行块时,缓冲区被视为已锁定,并且没有其他代码可以进入锁定。此外,锁定缓冲区不能使用 resizefree 进行更改。

以下操作会获取锁:resizefree

锁定不是线程安全的。它被设计为非阻塞系统调用的安全网。您只能通过适当的同步技术在各个线程之间共享缓冲区。

buffer = IO::Buffer.new(4)
buffer.locked? #=> false

Fiber.schedule do
  buffer.locked do
    buffer.write(io) # theoretical system call interface
  end
end

Fiber.schedule do
  # in `locked': Buffer already locked! (IO::Buffer::LockedError)
  buffer.locked do
    buffer.set_string("test", 0)
  end
end
VALUE
rb_io_buffer_locked(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Buffer already locked!");
    }

    buffer->flags |= RB_IO_BUFFER_LOCKED;

    VALUE result = rb_yield(self);

    buffer->flags &= ~RB_IO_BUFFER_LOCKED;

    return result;
}
locked? → true 或 false 点击切换源代码

如果缓冲区已锁定,表示它位于 locked 块执行中。已锁定的缓冲区无法调整大小或释放,并且无法对其获取另一个锁。

锁定不是线程安全的,但它是一种语义,用于确保在系统调用使用缓冲区时缓冲区不会移动。

buffer.locked do
  buffer.write(io) # theoretical system call interface
end
static VALUE
rb_io_buffer_locked_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_LOCKED);
}
mapped? → true 或 false 点击切换源代码

如果缓冲区已映射,表示它引用了由缓冲区映射的内存。

映射缓冲区要么是匿名的(如果通过 ::new 使用 IO::Buffer::MAPPED 标志创建,或者如果大小至少为 IO::Buffer::PAGE_SIZE),要么由文件支持(如果通过 ::map 创建)。

映射缓冲区通常可以调整大小,此操作通常会使所有切片无效,但并非总是如此。

static VALUE
rb_io_buffer_mapped_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_MAPPED);
}
not! → io_buffer 点击切换源代码

通过对源应用二进制 NOT 操作就地修改源缓冲区。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.not!
# =>
# #<IO::Buffer 0x000056307a33a450+10 INTERNAL>
# 0x00000000  ce cd cc cb ca c9 c8 c7 c6 cf                   ..........
static VALUE
io_buffer_not_inplace(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_not_inplace(base, size);

    return self;
}
null? → true 或 false 点击切换源代码

如果缓冲区已通过 free 释放,通过 transfer 传输,或者根本从未分配过。

buffer = IO::Buffer.new(0)
buffer.null? #=> true

buffer = IO::Buffer.new(4)
buffer.null? #=> false
buffer.free
buffer.null? #=> true
static VALUE
rb_io_buffer_null_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->base == NULL);
}
or!(mask) → io_buffer 点击切换源代码

通过使用掩码对源应用二进制 OR 操作就地修改源缓冲区,必要时重复。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.or!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a272350+10 INTERNAL>
# 0x00000000  ff 32 33 ff ff 36 37 ff ff 30                   .23..67..0
static VALUE
io_buffer_or_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_or_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
pread(io, from, [length, [offset]]) → 读取长度或 -errno 点击切换源代码

从指定位置 from 开始,从 io 中读取至少 length 字节,写入从 offset 开始的缓冲区。如果发生错误,则返回 -errno

如果未指定 lengthlengthnil,则其默认为缓冲区大小减去偏移量,即整个缓冲区。

如果 length 为零,则会执行一次 pread 操作。

如果未指定 offset,则其默认为零,即缓冲区的开头。

IO::Buffer.for('test') do |buffer|
  p buffer
  # =>
  # <IO::Buffer 0x00007fca40087c38+4 SLICE>
  # 0x00000000  74 65 73 74         test

  # take 2 bytes from the beginning of urandom,
  # put them in buffer starting from position 2
  buffer.pread(File.open('/dev/urandom', 'rb'), 0, 2, 2)
  p buffer
  # =>
  # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE>
  # 0x00000000  05 35 73 74         te.5
end
static VALUE
io_buffer_pread(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 2, 4);

    VALUE io = argv[0];
    rb_off_t from = NUM2OFFT(argv[1]);

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);

    return rb_io_buffer_pread(self, io, from, length, offset);
}
private? → true 或 false 单击以切换源

如果缓冲区是私有的,则表示对缓冲区的修改不会复制到底层文件映射。

# Create a test file:
File.write('test.txt', 'test')

# Create a private mapping from the given file. Note that the file here
# is opened in read-only mode, but it doesn't matter due to the private
# mapping:
buffer = IO::Buffer.map(File.open('test.txt'), nil, 0, IO::Buffer::PRIVATE)
# => #<IO::Buffer 0x00007fce63f11000+4 MAPPED PRIVATE>

# Write to the buffer (invoking CoW of the underlying file buffer):
buffer.set_string('b', 0)
# => 1

# The file itself is not modified:
File.read('test.txt')
# => "test"
static VALUE
rb_io_buffer_private_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_PRIVATE);
}
pwrite(io, from, [length, [offset]]) → 写入长度或 -errno 单击以切换源

从缓冲区写入至少 length 字节,从 offset 开始,到 io,从指定的 from 位置开始。如果出现错误,则返回 -errno

如果未指定 lengthlengthnil,则其默认为缓冲区大小减去偏移量,即整个缓冲区。

如果 length 为零,则会执行一个 pwrite 操作。

如果未指定 offset,则其默认为零,即缓冲区的开头。

如果 from 位置超出了文件末尾,则会用空值 (0 值) 字节填充该间隙。

out = File.open('output.txt', File::RDWR) # open for read/write, no truncation
IO::Buffer.for('1234567').pwrite(out, 2, 3, 1)

这会导致 234 (3 个字节,从位置 1 开始) 写入到 output.txt 中,从文件位置 2 开始。

static VALUE
io_buffer_pwrite(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 2, 4);

    VALUE io = argv[0];
    rb_off_t from = NUM2OFFT(argv[1]);

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-2, argv+2, &length, &offset);

    return rb_io_buffer_pwrite(self, io, from, length, offset);
}
read(io, [length, [offset]]) → 读取长度或 -errno 单击以切换源

io 中读取至少 length 字节,到从 offset 开始的缓冲区中。如果出现错误,则返回 -errno

如果未指定 lengthlengthnil,则其默认为缓冲区大小减去偏移量,即整个缓冲区。

如果 length 为零,则会执行一个 read 操作。

如果未指定 offset,则其默认为零,即缓冲区的开头。

IO::Buffer.for('test') do |buffer|
  p buffer
  # =>
  # <IO::Buffer 0x00007fca40087c38+4 SLICE>
  # 0x00000000  74 65 73 74         test
  buffer.read(File.open('/dev/urandom', 'rb'), 2)
  p buffer
  # =>
  # <IO::Buffer 0x00007f3bc65f2a58+4 EXTERNAL SLICE>
  # 0x00000000  05 35 73 74         .5st
end
static VALUE
io_buffer_read(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 3);

    VALUE io = argv[0];

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);

    return rb_io_buffer_read(self, io, length, offset);
}
readonly? → true 或 false 单击以切换源

如果缓冲区是只读的,则表示无法使用 set_valueset_stringcopy 等方法修改缓冲区。

冻结的字符串和只读文件会创建只读缓冲区。

static VALUE
io_buffer_readonly_p(VALUE self)
{
    return RBOOL(rb_io_buffer_readonly_p(self));
}
resize(new_size) → self 单击以切换源

将缓冲区调整为 new_size 字节,同时保留其内容。根据旧大小和新大小,与缓冲区关联的内存区域可能会扩展,或在内容被复制的情况下重新分配到不同的地址。

buffer = IO::Buffer.new(4)
buffer.set_string("test", 0)
buffer.resize(8) # resize to 8 bytes
# =>
# #<IO::Buffer 0x0000555f5d1a1630+8 INTERNAL>
# 0x00000000  74 65 73 74 00 00 00 00                         test....

外部缓冲区(使用 ::for 创建)和锁定缓冲区无法调整大小。

static VALUE
io_buffer_resize(VALUE self, VALUE size)
{
    rb_io_buffer_resize(self, io_buffer_extract_size(size));

    return self;
}
set_string(string, [offset, [length, [source_offset]]]) → size 单击以切换源

使用 memcpy,高效地从源 String 复制到缓冲区,在 offset 处。

buf = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00                         ........

# set buffer starting from offset 1, take 2 bytes starting from string's
# second
buf.set_string('test', 1, 2, 1)
# => 2
buf
# =>
# #<IO::Buffer 0x0000557412714a20+8 INTERNAL>
# 0x00000000  00 65 73 00 00 00 00 00                         .es.....

另请参阅 copy,了解有关如何使用缓冲区写入来更改关联的字符串和文件的示例。

static VALUE
io_buffer_set_string(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 4);

    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE string = rb_str_to_str(argv[0]);

    const void *source_base = RSTRING_PTR(string);
    size_t source_size = RSTRING_LEN(string);

    return io_buffer_copy_from(buffer, source_base, source_size, argc-1, argv+1);
}
set_value(type, offset, value) → offset 单击以切换源

offset处将typevalue写入缓冲区。type应为get_value中描述的符号之一。

buffer = IO::Buffer.new(8)
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 00 00 00 00 00

buffer.set_value(:U8, 1, 111)
# => 1

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 6f 00 00 00 00 00 00                         .o......

请注意,如果type为整数且valueFloat,则会执行隐式截断

buffer = IO::Buffer.new(8)
buffer.set_value(:U32, 0, 2.5)

buffer
# =>
# #<IO::Buffer 0x0000555f5c9a2d50+8 INTERNAL>
# 0x00000000  00 00 00 02 00 00 00 00
#                      ^^ the same as if we'd pass just integer 2
static VALUE
io_buffer_set_value(VALUE self, VALUE type, VALUE _offset, VALUE value)
{
    void *base;
    size_t size;
    size_t offset = io_buffer_extract_offset(_offset);

    rb_io_buffer_get_bytes_for_writing(self, &base, &size);

    rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);

    return SIZET2NUM(offset);
}
set_values(buffer_types, offset, values) → offset 单击以切换源

offset处将buffer_typesvalues写入缓冲区。buffer_types应为get_value中描述的符号数组。values应为要写入的值数组。

buffer = IO::Buffer.new(8)
buffer.set_values([:U8, :U16], 0, [1, 2])
buffer
# =>
# #<IO::Buffer 0x696f717561746978+8 INTERNAL>
# 0x00000000  01 00 02 00 00 00 00 00                         ........
static VALUE
io_buffer_set_values(VALUE self, VALUE buffer_types, VALUE _offset, VALUE values)
{
    if (!RB_TYPE_P(buffer_types, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument buffer_types should be an array!");
    }

    if (!RB_TYPE_P(values, T_ARRAY)) {
        rb_raise(rb_eArgError, "Argument values should be an array!");
    }

    if (RARRAY_LEN(buffer_types) != RARRAY_LEN(values)) {
        rb_raise(rb_eArgError, "Argument buffer_types and values should have the same length!");
    }

    size_t offset = io_buffer_extract_offset(_offset);

    void *base;
    size_t size;
    rb_io_buffer_get_bytes_for_writing(self, &base, &size);

    for (long i = 0; i < RARRAY_LEN(buffer_types); i++) {
        VALUE type = rb_ary_entry(buffer_types, i);
        VALUE value = rb_ary_entry(values, i);
        rb_io_buffer_set_value(base, size, RB_SYM2ID(type), &offset, value);
    }

    return SIZET2NUM(offset);
}
shared? → true 或 false 单击以切换源

如果缓冲区是共享的,这意味着它引用可以与其他进程共享的内存(因此可能会在未在本地修改的情况下发生更改)。

# Create a test file:
File.write('test.txt', 'test')

# Create a shared mapping from the given file, the file must be opened in
# read-write mode unless we also specify IO::Buffer::READONLY:
buffer = IO::Buffer.map(File.open('test.txt', 'r+'), nil, 0)
# => #<IO::Buffer 0x00007f1bffd5e000+4 EXTERNAL MAPPED SHARED>

# Write to the buffer, which will modify the mapped file:
buffer.set_string('b', 0)
# => 1

# The file itself is modified:
File.read('test.txt')
# => "best"
static VALUE
rb_io_buffer_shared_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(buffer->flags & RB_IO_BUFFER_SHARED);
}
size → 整数 单击以切换源

返回显式设置的缓冲区大小(在使用::new创建时或在resize时),或从字符串或文件中创建缓冲区时推断出的缓冲区大小。

VALUE
rb_io_buffer_size(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return SIZET2NUM(buffer->size);
}
slice([offset, [length]]) → io_buffer 单击以切换源

生成另一个IO::Buffer,它是一个切片(或对当前切片的视图),从offset字节开始,持续length字节。

切片发生时不会复制内存,并且切片会继续与原始缓冲区的源(字符串或文件,如果存在)相关联。

如果未给定偏移量,则为零。如果偏移量为负,则会引发ArgumentError

如果未给定长度,则切片将与原始缓冲区一样长,减去指定的偏移量。如果长度为负,则会引发ArgumentError

如果offset+length超出当前缓冲区的边界,则引发RuntimeError

string = 'test'
buffer = IO::Buffer.for(string)

slice = buffer.slice
# =>
# #<IO::Buffer 0x0000000108338e68+4 SLICE>
# 0x00000000  74 65 73 74                                     test

buffer.slice(2)
# =>
# #<IO::Buffer 0x0000000108338e6a+2 SLICE>
# 0x00000000  73 74                                           st

slice = buffer.slice(1, 2)
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000  65 73                                           es

# Put "o" into 0s position of the slice
slice.set_string('o', 0)
slice
# =>
# #<IO::Buffer 0x00007fc3d34ebc49+2 SLICE>
# 0x00000000  6f 73                                           os

# it is also visible at position 1 of the original buffer
buffer
# =>
# #<IO::Buffer 0x00007fc3d31e2d80+4 SLICE>
# 0x00000000  74 6f 73 74                                     tost

# ...and original string
string
# => tost
static VALUE
io_buffer_slice(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 0, 2);

    size_t offset, length;
    struct rb_io_buffer *buffer = io_buffer_extract_offset_length(self, argc, argv, &offset, &length);

    return rb_io_buffer_slice(buffer, self, offset, length);
}
to_s → 字符串 单击以切换源

缓冲区的简短表示形式。它包括地址、大小和符号标志。此格式可能会更改。

puts IO::Buffer.new(4) # uses to_s internally
# #<IO::Buffer 0x000055769f41b1a0+4 INTERNAL>
VALUE
rb_io_buffer_to_s(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE result = rb_str_new_cstr("#<");

    rb_str_append(result, rb_class_name(CLASS_OF(self)));
    rb_str_catf(result, " %p+%"PRIdSIZE, buffer->base, buffer->size);

    if (buffer->base == NULL) {
        rb_str_cat2(result, " NULL");
    }

    if (buffer->flags & RB_IO_BUFFER_EXTERNAL) {
        rb_str_cat2(result, " EXTERNAL");
    }

    if (buffer->flags & RB_IO_BUFFER_INTERNAL) {
        rb_str_cat2(result, " INTERNAL");
    }

    if (buffer->flags & RB_IO_BUFFER_MAPPED) {
        rb_str_cat2(result, " MAPPED");
    }

    if (buffer->flags & RB_IO_BUFFER_FILE) {
        rb_str_cat2(result, " FILE");
    }

    if (buffer->flags & RB_IO_BUFFER_SHARED) {
        rb_str_cat2(result, " SHARED");
    }

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_str_cat2(result, " LOCKED");
    }

    if (buffer->flags & RB_IO_BUFFER_PRIVATE) {
        rb_str_cat2(result, " PRIVATE");
    }

    if (buffer->flags & RB_IO_BUFFER_READONLY) {
        rb_str_cat2(result, " READONLY");
    }

    if (buffer->source != Qnil) {
        rb_str_cat2(result, " SLICE");
    }

    if (!io_buffer_validate(buffer)) {
        rb_str_cat2(result, " INVALID");
    }

    return rb_str_cat2(result, ">");
}
transfer → new_io_buffer 单击以切换源

将底层内存的所有权传输到新缓冲区,导致当前缓冲区未初始化。

buffer = IO::Buffer.new('test')
other = buffer.transfer
other
# =>
# #<IO::Buffer 0x00007f136a15f7b0+4 SLICE>
# 0x00000000  74 65 73 74                                     test
buffer
# =>
# #<IO::Buffer 0x0000000000000000+0 NULL>
buffer.null?
# => true
VALUE
rb_io_buffer_transfer(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    if (buffer->flags & RB_IO_BUFFER_LOCKED) {
        rb_raise(rb_eIOBufferLockedError, "Cannot transfer ownership of locked buffer!");
    }

    VALUE instance = rb_io_buffer_type_allocate(rb_class_of(self));
    struct rb_io_buffer *transferred;
    TypedData_Get_Struct(instance, struct rb_io_buffer, &rb_io_buffer_type, transferred);

    *transferred = *buffer;
    io_buffer_zero(buffer);

    return instance;
}
valid? → true 或 false 单击以切换源

返回缓冲区 buffer 是否可访问。

如果缓冲区是已释放或在不同地址重新分配的另一个缓冲区(或字符串)的切片,则该缓冲区将变为无效。

static VALUE
rb_io_buffer_valid_p(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    return RBOOL(io_buffer_validate(buffer));
}
values(buffer_type, [offset, [count]]) → array 单击以切换源

offset 开始返回 buffer_type 值的数组。

如果给定 count,则仅返回 count 个值。

IO::Buffer.for("Hello World").values(:U8, 2, 2)
# => [108, 108]
static VALUE
io_buffer_values(int argc, VALUE *argv, VALUE self)
{
    const void *base;
    size_t size;

    rb_io_buffer_get_bytes_for_reading(self, &base, &size);

    ID buffer_type;
    if (argc >= 1) {
        buffer_type = RB_SYM2ID(argv[0]);
    }
    else {
        buffer_type = RB_IO_BUFFER_DATA_TYPE_U8;
    }

    size_t offset, count;
    io_buffer_extract_offset_count(buffer_type, size, argc-1, argv+1, &offset, &count);

    VALUE array = rb_ary_new_capa(count);

    for (size_t i = 0; i < count; i++) {
        VALUE value = rb_io_buffer_get_value(base, size, buffer_type, &offset);
        rb_ary_push(array, value);
    }

    return array;
}
write(io, [length, [offset]]) → 已写入长度或 -errno 单击以切换源

offset 开始,从缓冲区写入至少 length 字节到 io 中。如果发生错误,则返回 -errno

如果未指定 lengthlengthnil,则其默认为缓冲区大小减去偏移量,即整个缓冲区。

如果 length 为零,则将执行一个 write 操作。

如果未指定 offset,则其默认为零,即缓冲区的开头。

out = File.open('output.txt', 'wb')
IO::Buffer.for('1234567').write(out, 3)

这会导致 123 被写入 output.txt

static VALUE
io_buffer_write(int argc, VALUE *argv, VALUE self)
{
    rb_check_arity(argc, 1, 3);

    VALUE io = argv[0];

    size_t length, offset;
    io_buffer_extract_length_offset(self, argc-1, argv+1, &length, &offset);

    return rb_io_buffer_write(self, io, length, offset);
}
xor!(mask) → io_buffer 单击以切换源

通过对源应用二进制 XOR 操作(使用掩码,根据需要重复),就地修改源缓冲区。

source = IO::Buffer.for("1234567890").dup # Make a read/write copy.
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000  31 32 33 34 35 36 37 38 39 30                   1234567890

source.xor!(IO::Buffer.for("\xFF\x00\x00\xFF"))
# =>
# #<IO::Buffer 0x000056307a25b3e0+10 INTERNAL>
# 0x00000000  ce 32 33 cb ca 36 37 c7 c6 30                   .23..67..0
static VALUE
io_buffer_xor_inplace(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);
    io_buffer_check_overlaps(buffer, mask_buffer);

    void *base;
    size_t size;
    io_buffer_get_bytes_for_writing(buffer, &base, &size);

    memory_xor_inplace(base, size, mask_buffer->base, mask_buffer->size);

    return self;
}
source | mask → io_buffer 单击以切换源

通过对源应用二进制 OR 操作(使用掩码,根据需要重复),生成与源大小相同的新缓冲区。

IO::Buffer.for("1234567890") | IO::Buffer.for("\xFF\x00\x00\xFF")
# =>
# #<IO::Buffer 0x0000561785ae3480+10 INTERNAL>
# 0x00000000  ff 32 33 ff ff 36 37 ff ff 30                   .23..67..0
static VALUE
io_buffer_or(VALUE self, VALUE mask)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    struct rb_io_buffer *mask_buffer = NULL;
    TypedData_Get_Struct(mask, struct rb_io_buffer, &rb_io_buffer_type, mask_buffer);

    io_buffer_check_mask(mask_buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_or(output_buffer->base, buffer->base, buffer->size, mask_buffer->base, mask_buffer->size);

    return output;
}
~source → io_buffer 单击以切换源

通过对源应用二进制 NOT 操作,生成与源大小相同的新缓冲区。

~IO::Buffer.for("1234567890")
# =>
# #<IO::Buffer 0x000055a5ac42f120+10 INTERNAL>
# 0x00000000  ce cd cc cb ca c9 c8 c7 c6 cf                   ..........
static VALUE
io_buffer_not(VALUE self)
{
    struct rb_io_buffer *buffer = NULL;
    TypedData_Get_Struct(self, struct rb_io_buffer, &rb_io_buffer_type, buffer);

    VALUE output = rb_io_buffer_new(NULL, buffer->size, io_flags_for_size(buffer->size));
    struct rb_io_buffer *output_buffer = NULL;
    TypedData_Get_Struct(output, struct rb_io_buffer, &rb_io_buffer_type, output_buffer);

    memory_not(output_buffer->base, buffer->base, buffer->size);

    return output;
}